States agree on global mercury ban but leave dental amalgam out

Daniel Zimmermann
DTI

GENEVA, Switzerland: Following four years of negotiations, representatives of more than 140 governments recently paved the way for a worldwide ban of mercury-containing products. They also agreed to a number of measures for reducing pollution caused by industrial use of the metal, such as in dental fillings.

The treaty, named the Minamata Convention after a Japanese town seriously affected by a mercury disaster in the 1950s, is expected to come into full effect by 2020. It will be signed in October at a special meeting in Japan, according to representatives of the United Nations Environmental Programme, which hosted the meeting of the International Negotiating Committee on Mercury last month in Geneva.

Measures will include the support of developing nations to develop alternatives to processes that utilise mercury and to reduce emissions through new technologies. Owing to its physical characteristics, mercury is used in a number of industries and products today, including small-scale gold mining, where it separates the precious metal from rock. Together with emissions from fossil-fuel power plants, among other industries, gold mining is considered to be the rock. Together with emissions from fossil-fuel power plants, among other industries, gold mining is considered to be the main cause of most hospital-acquired infections worldwide.

According to the researchers, the material made of a newly developed polymer is biodegradable and therefore is eliminated naturally after use. If approved, it will be used for a new range of medical and consumer products, which could include anti-bacterial coatings for medical devices and dental fillings. Hospital-acquired infections through MRSA, for example, are among the leading causes of death worldwide. In Singapore alone, patients with microbial infections are ten times more likely to die if hospitalised, according to national statistics.

A new effective tool that could help to fight multidrug-resistant bacteria has recently been unveiled by researchers from Singapore. Developed in partnership with IBM Research, the yet-unnamed hydrogel was found to destroy various types of fungi and bacteria upon contact in lab tests, including methicillin-resistant Staphylococcus aureus (MRSA), the main cause of most hospital-acquired infections worldwide.

A number of dental colleges in India have recently been investigated by the Central Bureau of Investigation in New Delhi for having paid money to members of the Dental Council of India in an effort to obtain permission for their postgraduate courses. According to newspaper reports, at least ten facilities run by four institutions in the southern province of Tamil Nadu were raided and two dentists arrested on bribery charges by the anticorruption agency in January.

India has almost 300 colleges, producing 50,000 new dentists every year, of which 90 per cent are private. Permission to operate is granted by the Council, which many have accused in the recent past of being corrupt and having granted permission for colleges that did not fulfill the required standards for educators and teaching equipment.

Asthma affects dental development

New evidence from India suggests that a compromised airway has an effect on dentoalveolar morphology in humans. Among other things, the researchers found that the intermolars and the inter-destal widths were smaller in both arches in asthmatic children.

Super-gel fights superbugs

A new effective tool that could help to fight multidrug-resistant bacteria has recently been unveiled by researchers from Singapore. Developed in partnership with IBM Research, the yet-unnamed hydrogel was found to destroy various types of fungi and bacteria upon contact in lab tests, including methicillin-resistant Staphylococcus aureus (MRSA), the main cause of most hospital-acquired infections worldwide.

According to the researchers, the material made of a newly developed polymer is biodegradable and therefore is eliminated naturally after use. If approved, it will be used for a new range of medical and consumer products, which could include anti-bacterial coatings for medical devices and dental fillings. Hospital-acquired infections through MRSA, for example, are among the leading causes of death worldwide. In Singapore alone, patients with microbial infections are ten times more likely to die if hospitalised, according to national statistics.

A new effective tool that could help to fight multidrug-resistant bacteria has recently been unveiled by researchers from Singapore. Developed in partnership with IBM Research, the yet-unnamed hydrogel was found to destroy various types of fungi and bacteria upon contact in lab tests, including methicillin-resistant Staphylococcus aureus (MRSA), the main cause of most hospital-acquired infections worldwide.

According to the researchers, the material made of a newly developed polymer is biodegradable and therefore is eliminated naturally after use. If approved, it will be used for a new range of medical and consumer products, which could include anti-bacterial coatings for medical devices and dental fillings. Hospital-acquired infections through MRSA, for example, are among the leading causes of death worldwide. In Singapore alone, patients with microbial infections are ten times more likely to die if hospitalised, according to national statistics.

A new effective tool that could help to fight multidrug-resistant bacteria has recently been unveiled by researchers from Singapore. Developed in partnership with IBM Research, the yet-unnamed hydrogel was found to destroy various types of fungi and bacteria upon contact in lab tests, including methicillin-resistant Staphylococcus aureus (MRSA), the main cause of most hospital-acquired infections worldwide.

According to the researchers, the material made of a newly developed polymer is biodegradable and therefore is eliminated naturally after use. If approved, it will be used for a new range of medical and consumer products, which could include anti-bacterial coatings for medical devices and dental fillings. Hospital-acquired infections through MRSA, for example, are among the leading causes of death worldwide. In Singapore alone, patients with microbial infections are ten times more likely to die if hospitalised, according to national statistics.

A new effective tool that could help to fight multidrug-resistant bacteria has recently been unveiled by researchers from Singapore. Developed in partnership with IBM Research, the yet-unnamed hydrogel was found to destroy various types of fungi and bacteria upon contact in lab tests, including methicillin-resistant Staphylococcus aureus (MRSA), the main cause of most hospital-acquired infections worldwide.

According to the researchers, the material made of a newly developed polymer is biodegradable and therefore is eliminated naturally after use. If approved, it will be used for a new range of medical and consumer products, which could include anti-bacterial coatings for medical devices and dental fillings. Hospital-acquired infections through MRSA, for example, are among the leading causes of death worldwide. In Singapore alone, patients with microbial infections are ten times more likely to die if hospitalised, according to national statistics.

A new effective tool that could help to fight multidrug-resistant bacteria has recently been unveiled by researchers from Singapore. Developed in partnership with IBM Research, the yet-unnamed hydrogel was found to destroy various types of fungi and bacteria upon contact in lab tests, including methicillin-resistant Staphylococcus aureus (MRSA), the main cause of most hospital-acquired infections worldwide.

According to the researchers, the material made of a newly developed polymer is biodegradable and therefore is eliminated naturally after use. If approved, it will be used for a new range of medical and consumer products, which could include anti-bacterial coatings for medical devices and dental fillings. Hospital-acquired infections through MRSA, for example, are among the leading causes of death worldwide. In Singapore alone, patients with microbial infections are ten times more likely to die if hospitalised, according to national statistics.